Known Property
Application

Tumor Initiating Cell (TIC) probe

 Immunofluorescence and therapeutic treatment for TIC in animal modelCell selectivity mechanism: POLD (heme oxygenase 2: HMOX2)

ORDER
 -

SenPro
 order@senprobe.com

() www.senprobe.com

Storage (1) Delivery: Room Temperature
(2) Dried compound: $4{ }^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$
(3) Compound solution: $4{ }^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$

■ General Use Guide

More than $1 / 100$ dilution of 10 mM of DMSO stock solution is essential
For biomedical use to avoid DMSO concentration higher than 1%.
Working concentrations for specific applications should be determined by the investigator.
It is recommended to use up the buffer diluted solution within one day. The compound may be decomposed or precipitated out from buffer solution.

Molecular Weight

$$
\lambda_{\mathrm{ex}} / \lambda_{\mathrm{em}}
$$

$797.84\left(\mathrm{C}_{45} \mathrm{H}_{53} \mathrm{FIN}_{3} \mathrm{O}_{2}\right)$
805 / $825 n m$

The long wavelength of TiNIR allowed the in vivo imaging of tumor in mouse model both is fluorescence and photoacoustic imaging. The affinity of TiNIR to target proteins were monitored by fluorescence and the bound protein was identified as heme oxygenase 2 (HMOX2). TIC maintain high level of reactive oxygen species (ROS) in the cell, and HMOX2 seem to detoxify cells by removing intracellular ROS.

Discovery of the NIR fluorescence probe for human lung TIC. (A) Fluorescence images show 32A, hLuEpi, TS10, and TS32 cells after being stained with TiNIR (100 nM) and DAPI ($1 \mu \mathrm{~g} / \mathrm{mL}$) for 40 $\mathrm{min}, 37^{\circ} \mathrm{C}$. (B) Flow cytometry analyzed fluorescence intensity of 32A, hLuEpi, TS10, and TS32 cells after being stained with TiNIR ($10 \mathrm{nM}, 40 \mathrm{~min}, \mathrm{RT})$.

- Related probes: TiY

Reference

1. A NIR probe tracks and treats lung tumor initiating cells by targeting HMOX2, Kim, J. J.; Lee, Y. A.; Su, D.; Lee, J.; Park, S. J.; Kim, B.; Lee, J. H. J.; Liu, X.; Kim, S. S.; Bae, M. A.; Lee, J.
S.; Hong, S. C.; Wang, L.; Samanta, A.; Kwon, H. Y.; Choi, S. Y.; Kim, J. Y.; Yu, Y. H.; Ha, H. H.; Wang, Z.; Tam, W. L.; Lim, B.; Kang, N. Y.*; Chang, Y. T.* J. Am. Chem.

Soc. 2019, 141, 14673-14686.

